Horia har heldigvis skrevet til bloggen igen:
Den matematiske version af Hvem kom først, hønen eller ægget?
Når man  første gang lærer om funktioner og deres grafer, er et koordinatsystem den første ting man tegner. Vi vælger et origo, vi tegner x-aksen, og bagefter y-aksen. Men hvor ved vi  fra, at “den rigtige” y-akse skal stå vinkelret pa x-aksen? Hvorfor skal der
være  mellem de to linjer? Og hvad har det med 
 at gøre?
Jeg skal nu prøve at overbevise jer om, at tallet  samt  sinus og cosinus
funktionerne kom før koordinatsystemet. Med andre ord, kan den abstrakte matematisk
analyse bruges til at give en præcis mening til begreber som ret linje, plan, vinkel, osv.
Det Euklidiske rum.
Vi starter med at organisere planen   som et vektorrum hvor hvert punkt r er entydigt beskrevet af to reelle koordinater x og y, eller r = [x; y]. Rummet 
 er samtidig et Hilbertrum genereret af det euklidiske indre produkt, og det gør i sidste ende, at afstanden mellem to punkter r = [x; y] og r’ = [x’; y’] er givet ved Pythagoras’ formel:
Hvis vi har en kurve i planen defineret ved r(t) = [x(t); y(t)] hvor både x(t) og y(t) er
differentiable funktioner, så definerer vi buelængden mellem punkterne   r(t_0) og  r(t_1)  som:
Tag nu et stykke papir frem og vælg et vilkårligt punkt O. Papiret modellerer  mens O svarer til punktet [0; 0]. Vælg nu et andet vilkårligt punkt 
 pa papiret og kald det [1; 0].
På denne måde bestemmer vi også hvad det betyder at have “længde en” i vores model.
x-aksen bliver nu den rette linje som forbinder O med P. Set som et underrum af
dimension 1, består vores x-akse af alle punkterne af typen [t; 0] hvor . Vi er nu klar til at gå i gang med at finde punktet med koordinater [0; 1] og derefter at tegne y-aksen.
Cosinus og sinus.
Betragt systemet af differentialligninger  og 
, hvor f(0) = 1
og g(0) = 0. Den generelle teori omkring førsteordens lineære differentialligninger med
en global Lipschitz betingelse garanterer, at der findes en entydig global løsning til vores
ligningsystem.
Lad os nu udlede nogle vigtige egenskaber ved f og g.
1. Funktionen  må være konstant, fordi 
 for alle t, og derfor har vi, at 
 =
 for alle t. Vi konkluderer, at billedmængden af kurven r(t) = [f(t); g(t)] er en delmængde af enhedscirklen.
2.  Nu viser vi, at  og 
 er periodiske. Vi ved, at 
 og 
. Når 
 bliver kun lidt større end 0, er 
 stadigvæk tæt på 1, derfor positiv. Ligningen 
 medfører til, at 
 vokser og bliver større end nul. Samtidig har vi fra 
, at 
 er aftagende og bliver mindre. Det må derfor eksistere et 
 sådan at 
 og 
.
Når  er lidt større end 
, bliver 
 negativ og aftagende mod 
 mens 
 forbliver positiv men aftager mod 
. Det må eksistere et 
 sådan at 
 og 
.
Når  er lidt større end 
 bliver 
 negativ og aftagende mod 
 mens 
 er negativ og voksende mod 
. Det må eksistere et 
 sådan at 
 og 
.
Endelig, når  er lidt større end 
, er 
 negativ og voksende mod 
 mens 
 er positiv og voksende mod 
. Det må eksistere et 
 sådan at 
 og 
.
En vigtig konsekvens er, at funktionerne  og 
 løser det samme system som 
 og 
, og har de samme begyndelsesværdier. Løsnings entydighed medfører derfor til, at 
 og 
. Det beviser, at 
 og 
 er periodiske og tallet 
 er den mindste (positive) periode. Fra nu af, ændrer vi 
‘s navn til 
, 
‘s navn til 
, og skriver 
 i stedet for 
.
3. Definer  og 
. Vi har, at 
 og 
 samt med 
 og 
. Løsningens entydighed medfører igen at 
 og 
. Med andre ord:
4. Vi skal nu vise, at , 
 og 
. Husk, at 
 er det mindste positive tal hvor 
 og 
, 
 er det mindste positivt tal hvor 
 og 
, mens 
 er det mindste positivt tal hvor 
 og 
. Perioden 
 er det mindste positivt tal hvor 
 og 
.
Hvis vi indsætter  i ligningen ovenfor, har vi at:
Den første ligning kræver, at enten  eller 
 må være nul. Hvis vi kobler det med den anden ligning, konkluderer vi, at 
 og 
. Men 
 kan ikke være lig med $+1$ fordi 
 og 
 er det mindste positiv tal hvor systemet vender tilbage til begyndelsesværdien. Derfor er 
 og 
, og ud fra definitionen af 
 må vi have, at 
.
Definer  og 
. Vi ser, at 
 og 
 samt med 
 og 
. Så har vi, at 
 og 
. Eller:
Ligning 3 
Indsæt  i ligningen ovenfor. Det giver 
, eller 
. Men det eneste punkt mellem 
 og 
 hvor cosinus kan være nul er 
. Derfor har vi, at 
, og 
.
Vi skal vise nu, at . Definer 
 og 
. Igen igen 
, 
, 
 og 
. Så har vi, at:
Ligning 4 
Indsæt  i Ligning 3  og brug Ligning 4:
Hvor stort er ?
Tangensfunktionen defineres som  for 
. På det interval har vi, at 
, funktionen er bijektiv og billedmængden er 
. Dens inverse noteres med 
, er defineret på 
 med værdier i 
, og 
.
Indsæt  i Ligning 2. Vi ser, at 
 og  
 og 
. Derfor:
Taylors formel med restled medfører til:
 
og hvis :
Efter integration mellem  og 
:
Det definerer en konvergent række, og ved hjælp af det kan vi komme arbitrært tæt på . I hvert fald, er 
 mindre end 
. Rækken blev først fundet omkring 1400 tallet af den indiske matematiker Madhava fra Sangamagrama, og senere genfundet  af James Gregory i 1668.
Tegning af y-aksen.
Nu er vi næsten klar til at tegne vores y-akse. Betragt kurven . Vi har lige set, at når 
 varierer fra 0 til 
, dækker vi hele enhedscirklen. Buelængden fra 
 til 
 hvor 
 er givet ved formlen 1. Her husker vi igen, at 
, 
, 
 og derfor 
. Det giver:
Tag nu en passer og tegn cirklen med origo i  og som går gennem 
. Cirklen krydser igen x-aksen i punktet 
. Tag et stykke snor af længde 
 og dæk den del af cirklen hvor 
, og med et endepunkt i 
. Vi har vist, at 
, så er snoren lang nok til at nå punktet 
. Klip snoren således at et af stykkerne dækker den øvre halvcirkel fra 
 til 
. Vi ved, at længden af stykket må være lig med 
. Del snoren i to og sæt en halvdel af den tilbage på cirklen med et endepunkt i 
. Halvdelen er nu kun 
 lang, så må det andet endepunkt ligge på  
. Tegn y-aksen og drik en stor, sort kaffe.
Tallet  er irrationalt.
Ja, det ved jeg godt. De moderne, pengefikserede tider vi lever i, er i mindre grad egnede til rene matematiske spørgsmål som irrationaliteten af et mærkeligt tal som . Men alligevel: dem som har nået at læse hertil må have haft en ærlig interesse i matematik, derfor skal jeg bare fortsætte uanset hvad.
Jeg skal tage udgangspunkt i Ivan Nivens artikel “A simple proof that  is irrational”, Bull. Amer. Math. Soc. 53(6), 509 (1947). Vi skal vise, at 
 ikke kan skrives som en brøk 
 hvor 
 og 
 er begge heltal. Men lad os antage det modsætte; det vil sige, vi antager at 
 hvor 
 og 
 er heltal.
Vi definerer to polynomier:
Lad os nu vise, at alle tal af typen  er heltal. For eksempel, har vi at:
Vi ser, at  er nul hvis 
 og 
 
 hvis 
. Hvis vi fortsætter med at differentiere, finder vi, at 
 er altid nul hvis 
, mens når 
, er de eneste ikke nul bidrag fra de forskellige led  kun dem hvor vi har “differentieret væk” faktoren 
. Det giver en 
 som gør, at resultatet bliver et heltal.
Vi bemærker identiteten . Kædereglen siger, at 
, derfor er 
 også heltal, for alle 
. En vigtig konsekvens er, at både 
 og 
 er heltal.
Ud fra definitionen af  ser vi, at 
. Derfor:
Analysens fundamentalsætning medfører til:
hvor højresiden altid er et heltal, for alle . Funktionen 
 er altid positiv på intervallet 
, derfor er dens integral også positiv ved siden af at være et heltal. Vi må have:
På den anden side, er  når 
. Derfor,  
. Men højresiden går mod nul når 
 vokser, og her er vores modstrid.